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Many sequences from number theory, such as the primes, are defined by recursive pro-
cedures, often leading to complex local behavior, but also to graphical similarity on
different scales — a property that can be analyzed by fractal dimension. This paper com-
putes sample fractal dimensions from the graphs of some number-theoretic functions. It
argues for the usefulness of empirical fractal dimension as a distinguishing characteristic
of the graph. Also, it notes a remarkable similarity between two apparently unrelated
sequences: the persistence of a number, and the memory of a prime. This similarity is
quantified using fractal dimension.
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1. Introduction

The graphs of number-theoretic functions, although not fractals in the proper sense,

can exhibit striking similarity on various scales. For example, consider the sequence

a(n) defined recursively by: a(1) = 1; a(n) = 1 − [p(n − 1)/p(n)]a(n − 1) if n > 1,

where p(n) denotes the nth prime. a(n) is called the oscillator sequence of p(n).

(Generally, if p denotes a sequence such that p(n) is never equal to 0, then the

oscillator sequence a(n) of p(n) is defined by the above recursive procedure.) In

Fig. 1, the graph of a(n) from n = 1 to 105 exhibits an unexpected fractal structure:

parts of the graph look like scaled-down copies of other parts.

Fractals are often studied with the aid of fractal dimension. Fractal dimension

is a measure of the “convolutedness” or “degree of meandering” of the fractal set;

for more information on fractal dimension, see Refs. 1 or 2. This paper examines

sample fractal dimensions of some arithmetical functions from both classical and

recreational number theory.

The paper [5] presents a fast and simple way of estimating the fractal dimension

of a wave-form (in the plane). The term wave-form refers to “the shape of a wave,

usually drawn as instantaneous values of a periodic quantity versus time” [5]. In
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practice, a wave-form is represented by a finite sample of N points W = {(xi, yi) :

i = 1, . . . , N} evenly spaced along the x-axis.

To estimate the fractal dimension D of the wave-form W = {(xi, yi) : i =

1, . . . , N}, W is first normalized using the formulas

x∗

i =
xi

xmax

, y∗

i =
yi − ymax

ymax − ymin

(1)

to obtain W ∗ = {(x∗

i
, y∗

i
) : i = 1, . . . , N}; here xmax, ymax denote the maximum

values of the numbers xi, yi, respectively, and ymin denotes the minimum of the

numbers yi. The fractal dimension D can be estimated using the formula

D = 1 +
ln(L)

ln(2N∗)
, (2)

where L is the length of the normalized wave-form W ∗, and N∗ = N − 1. L is

easily calculated by repeated application of the distance formula on (x∗

i
, y∗

i
) and

(x∗

i+1, y
∗

i+1) for i = 1, 2, . . . , N∗, that is

L =

N
∗

∑

i=1

√

(x∗

i+1 − x∗

i
)2 + (y∗

i+1 − y∗

i
)2 . (3)

In this paper, graphs of some arithmetical functions will be treated as if they

were waveforms, and their fractal dimensions estimated using Eq. (2). Strictly

speaking, the fractal dimensions of the graphs cannot be defined rigorously as

limits (as done in Ref. 1) because of the non-compactness of these sets. What

will be obtained are “sample fractal dimensions” — a statistical, empirically based

concept. Although the graphs are neither waveforms nor classical fractals, they are

generated by rules that are recursive and independent of scale. (For example, the

primes are generated using the sieve of Eratosthenes.) Intuitively, such rules induce

similarity — at the very least, statistical similarity — on different scales and make

the notion of sample or empirical fractal dimension meaningful. The overall con-

sistency of the estimates appearing below points to the existence of approximately

well-defined fractal dimensions, and hence, supports the applicability of the fractal

dimension notion to the graphs.

If f(n) defines an arithmetical function, and a, b are integers with a < b, then

the sample of f(n) from n = a to b is defined as the set of points W = {(a, f(a)),

(a + 1, f(a + 1)), . . . , (b, f(b))}. Note that only samples with points evenly spaced

by 1 along the abscissa are considered here. For example, if p(n) = the nth prime,

then the sample of p(n) from n = 1 to 4 is W = {(1, 2), (2, 3), (3, 5), (4, 7)}. It is

clear that Eq. (2) yields a value of D when applied to a sample.

2. The Joy of Dimensioning

This section presents the results of some fractal dimension calculations on various

samples of arithmetical functions. More precisely, the fractal dimension is estimated

using Eq.(2) on adjacent samples of equal size, and the values are averaged to yield
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Table 1. Estimated fractal dimensions of samples in range [a, b].

Range of n p(n) ϕ(n) τ(n) σ(n)

[1, 1000] 1.05207 1.69979 1.70217 1.64791

[1000, 2000] 1.01965 1.76963 1.70662 1.71397

[2000, 3000] 1.01021 1.78924 1.69172 1.73423

[3000, 4000] 1.00632 1.79913 1.69912 1.73465

[4000, 5000] 1.00416 1.80498 1.70404 1.75305

[5000, 6000] 1.00303 1.80708 1.67594 1.74926

[6000, 7000] 1.00225 1.80878 1.68878 1.74923

[7000, 8000] 1.00176 1.81019 1.6732 1.74426

[8000, 9000] 1.00144 1.81075 1.68417 1.75418

[9000, 10000] 1.00118 1.81221 1.67717 1.7558

Mean 1.01021 1.79118 1.69029 1.73365

Standard Deviation 0.0157687 0.0346781 0.012413 0.0327065

a representative dimension. While no attempt is made to prove convergence of

the different estimates, their consistently small variance strongly suggests that the

curve possesses some fractal structure, and that the derived (average) dimension

captures the “degree of meandering” of the entire curve.

The numerical results are presented in Table 1. This table lists, for some well-

known arithmetical functions f(n), the estimated fractal dimensions of samples

corresponding to n in the closed intervals [1, 2000], [1000, 2000], . . . , [9000, 10000].

Although the common sample size is 1000, calculations done with other large sample

sizes indicate similar results.

For example, in the row containing [1, 1000], one reads that the (empirical)

fractal dimension of the sample of p(n) = the nth prime from n = 1 to 1000 is

about 1.05207. In the same row, one reads that the fractal dimension of the sample

of ϕ(n) from n = 1 to 1000 is about 1.69979, where ϕ(n) is Euler’s totient function

giving the number of positive integers less than n and co-prime to n. The fractal

dimensions for the samples of τ(n) (the number of divisors of n) and σ(n) (the sum

of the divisors of n) from n = 1 to 1000 are about 1.70217, 1.64791, respectively.

In the next row, one reads that the fractal dimension of the sample of p(n) from

n = 1000 to 2000 is about 1.01965, and so on.

In the column under p(n), the fractal dimension estimates of samples for n = 1 to

1000, 1000 to 2000, . . . , 9000 to 10000 appear along with their mean and standard

deviation. The same can be said for the other arithmetical functions. What is

striking about the results is their small standard deviation, or equivalently, their

high consistency throughout the different intervals. The estimates for p(n), for

example, have a mean of 1.01021 and a standard deviation of only 0.0157687. The

closeness of the p(n)-mean to 1, the fractal dimension of a straight-line segment,

should be expected, since the Prime Number Theorem guarantees the regular large-

scale behavior of primes (for example, p(n) ∼ n ln(n); see Ref. 3, p. 10). Hence, the

graph of p(n) should be about as “convoluted” as a straight-line segment.
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The small standard deviations suggest that fractal dimension is intrinsic to the

arithmetical functions considered in Table 1, rather than just a measure with only

local validity. A potential application of this observation would be in the problem

of recognizing whether a set S of consecutive points is contained in the graph

of an arithmetical function f — a central problem for sequence databases such

as in Ref. 7. Suppose that the fractal dimension estimates of samples of f have

low standard deviation, so that their mean D can represent them. If the estimated

fractal dimension of S is far from D, then there is good reason to believe that S is not

contained in the graph of f . However, if the fractal dimensions are approximately

equal, it can only be concluded that the “convolutedness” or “degree of meandering”

of the two graphs are similar, as the next sections will show.

3. Oscillator Sequences

Of course, not all graphs have consistent sample fractal dimensions; and even among

those that do, the consistency is often not immediately apparent. The graph of the

oscillator sequence a(n) of p(n) defined in Sec. 1 has sample fractional dimensions

that at first vary considerably, then appear to stabilize at around 1.9. The sample

fractal dimensions of a(n) from n = 1 to 1000, 1000 to 2000, 2000 to 3000, . . . , 29000

to 30000 are respectively:

1.48932, 1.84434, 1.78545, 1.81604, 1.73604,

1.78899, 1.85303, 1.87271, 1.87794, 1.83885,

1.85961, 1.86793, 1.78133, 1.84995, 1.84795,

1.87404, 1.89203, 1.88279, 1.88939, 1.89757,

1.88931, 1.89954, 1.90197, 1.90077, 1.89752,

1.89859, 1.89699, 1.89727, 1.89545, 1.89758 .

Incidentally, it is an open problem whether a(n) → 1/2 or diverges.

Many oscillator sequences give sample dimensions close to 2, and so are nearly

two-dimensional (“space-filling,” like Peano’s curve). For example, if s(n) is the

constant sequence mapping each positive integer to 1, then the oscillator sequence

a(n) oscillates between the values 0 and 1, and is of course, periodic and divergent.

Computing the sample fractal dimensions from n = 1 to 1000, 1000 to 2000, and

so on, gives basically a constant estimate of about 1.9. Similarly, the sequence

s(n) = n has an oscillator sequence with sample fractal dimensions that settle to

about 1.9. On the other hand, the oscillator sequence of s(n) = n2 has sample

fractal dimensions that are very nearly = 1. The reader can verify these estimates

as an exercise.

4. Persistence

N. Sloane first defined the persistence of a number in Ref. 8 as the number of

times one needs to multiply the digits together before reaching a single digit. The

persistence of n is denoted by pers(n). For example, pers(679) = 5, as the following



July 28, 2003 9:5 WSPC/169-ACS 00086

246 J. L. Pe

chain of digit products shows: 679 → 378 → 168 → 48 → 32 → 6 (6 × 7 × 9 =

378, etc.).

Sloane conjectured that the persistence of a number does not exceed a certain

upper bound C. (Probably, C = 11.)

5. The Memory of a Prime

We introduced the notion of memory of a prime in A079066 of Ref. 7. The memory

of p(n) is defined to be the number of previous primes contained as sub-strings in

p(n). The sequence µ(n) = memory(p(n)) begins

0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 0, 3, . . . .

For example, µ(9) = memory(p(9)) = memory(23) = 2 since the smaller primes 2

and 3 are contained as sub-strings in 23. The least prime with memory = 3 is 113,

which contains the primes 3, 11, and 13 as sub-strings.

6. The Persistence of Memory

At first glance, the sequences ρ(n) = pers(n) and µ(n) = memory(p(n)) appear

to be totally unrelated, except for the occurrence of the words “persistence” and

“memory” in the title of a famous Salvador Daĺı painting. However, the graphs of

these functions exhibit an intriguing similarity. In Figs. 2 and 3, these functions

are graphed for n = 1200 to 1400; the similarity is also present in plots using

 11

(In Figures 2 and 3, consecutive points have been joined by straight line segments.) 
Figure 2. Graph of m(n) = memory(p(n)) from n = 1200 to 1400 
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Fig. 2. Graph of µ(n) = memory(p(n)) from n = 1200 to 1400.
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Figure 3. Graph of r(n) = pers(n) from n = 1200 to 1400 
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Fig. 3. Graph of ρ(n) = pers(n) from n = 1200 to 1400.

other intervals. Note the common shape of the peaks, troughs and plateaus in both

graphs.

However, one may be hard pressed to express exactly where the pictorial simi-

larity lies. The curves share none of the classical graphical descriptors (for example,

intercepts, maxima and minima) in common. Nor is one a scaled-down copy of the

other. On closer inspection, the similarity appears to be in the way the curves

“meander”. . . the fractal dimension comes to mind!

In Table 2, the columns corresponding to ρ and µ show the remarkable approx-

imate equality of the (mean) fractal dimensions of these two curves (about 1.67118

Table 2. Estimated fractal dimensions of samples in range [a, b].

Range of n ρ(n) = pers(n) µ(n) = memory(p(n)) pers(p(n))

[1, 1000] 1.6463 1.68512 1.66399
[1000, 2000] 1.66668 1.66678 1.6454
[2000, 3000] 1.67543 1.66443 1.65309
[3000, 4000] 1.69177 1.66564 1.66681
[4000, 5000] 1.69073 1.67143 1.65807
[5000, 6000] 1.6118 1.66339 1.56324
[6000, 7000] 1.67037 1.67665 1.66715
[7000, 8000] 1.68642 1.67867 1.66443
[8000, 9000] 1.67068 1.67449 1.65625
[9000, 10000] 1.70162 1.67758 1.61035
Mean 1.67118 1.67242 1.64488
Standard Deviation 0.026139 0.00725178 0.0332543
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for ρ and 1.67242 for µ). This probably accounts for the “hard to express” similarity.

Fractal dimension estimates for samples of pers(p(n)) also appear in Table 2, but

the (mean) fractal dimension appears to be somewhat different from those of ρ

and µ.

The approximate equality of the fractal dimensions of ρ and µ hint at a hidden

connection in the rules used to generate the sequences. The exact nature of this

connection is an open problem.

7. Mathematica Code

Here is the Mathematica code used in this paper to estimate fractal dimension:
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To compute the memories of the first 1000 primes:

 7

 
 lb = 1; 

ub = 1000; 
tprime = Table[ToString[Prime[i]], {i, 1, ub}]; 
a = {}; 
For[i = lb, i <= ub, i++, 

     m = 0; 
     For[j = 1, j < i, j++, 
       If[Length[StringPosition[tprime[[i]], tprime[[j]]]] > 0, m = m 
+ 1]]; 
     a = Append[a, {i, m}]]; 
a 
 

To plot the oscillator sequence of p(n) and estimate its fractal dimension: 
 

t = {{1,1}}; 
gt = 1; 
For[i = 2, i <= 10^3, i++,  
   gt = 1 - (Prime[i - 1]/Prime[i]) gt; 

       t = Append[t, {i,gt}]]; 
fd[t] 
 
ListPlot[t] 

 
 
References 
  
[B] Barnsley, M. “Fractals Everywhere.” Academic Press, San Diego, 1988. 
 
[C] Crownover, C. “An Introduction to Fractals and Chaos.” Jones and Bartlett, Boston, 
1995. 
 
[H-W] Hardy, G. and Wright, E. “Introduction to the Theory of Numbers (Fifth edition).” 
Oxford University Press, 1983. 
 
[L] Lauwerier, H. “Fractals.” Princeton University Press, 1987. 
 
[S] Sevcik, C. “A Procedure to Estimate the Fractal Dimension of Waveforms.” 
Appeared in Complexity International, volume 5, 1998. The article is also available at the 
URL: http://www.csu.edu.au/ci/vol05/sevcik/sevcik.html 
 
[SC] Schroeder, M. “Number Theory in Science and Communication (Third edition).” 
Springer-Verlag, 1997. 
 
[SL1] Sloane, N. “The Online Encyclopedia of Integer Sequences” at the following URL:  
http://www.research.att.com/~njas/sequences/Seis.html 
 
[SL2] Sloane, N. “The Persistence of a Number.” Appeared in Journal of Recreational 
Mathematics, volume 6, number 2, 1973. 
 

To plot the oscillator sequence of p(n) and estimate its fractal dimension:

 7

 
 lb = 1; 

ub = 1000; 
tprime = Table[ToString[Prime[i]], {i, 1, ub}]; 
a = {}; 
For[i = lb, i <= ub, i++, 

     m = 0; 
     For[j = 1, j < i, j++, 
       If[Length[StringPosition[tprime[[i]], tprime[[j]]]] > 0, m = m 
+ 1]]; 
     a = Append[a, {i, m}]]; 
a 
 

To plot the oscillator sequence of p(n) and estimate its fractal dimension: 
 

t = {{1,1}}; 
gt = 1; 
For[i = 2, i <= 10^3, i++,  
   gt = 1 - (Prime[i - 1]/Prime[i]) gt; 

       t = Append[t, {i,gt}]]; 
fd[t] 
 
ListPlot[t] 

 
 
References 
  
[B] Barnsley, M. “Fractals Everywhere.” Academic Press, San Diego, 1988.  
 
[C] Crownover, C. “An Introduction to Fractals and Chaos.” Jones and Bartl ett, Boston, 
1995. 
 
[H-W] Hardy, G. and Wright, E. “Introduction to the Theory of Numbers (Fifth edition).” 
Oxford University Press, 1983. 
 
[L] Lauwerier, H. “Fractals.”  Princeton University Press, 1987. 
 
[S] Sevcik, C. “A Procedure to Estimate the Fractal  Dimension of Waveforms.” 
Appeared in Complexity International, volume 5, 1998. The article is also available at the 
URL: http://www.csu.edu.au/ci/vol05/sevcik/sevcik.html 
 
[SC] Schroeder, M. “Number Theory in Science and Communication  (Third edition).” 
Springer-Verlag, 1997. 
 
[SL1] Sloane, N. “The Online Encyclopedia of Integer Sequences”  at the following URL:  
http://www.research.att.com/~njas/sequences/Seis.html 
 
[SL2] Sloane, N. “The Per sistence of a Number.” Appeared in Journal of Recreational 
Mathematics, volume 6, number 2, 1973. 
 

Acknowledgment

The author would like to thank Dr. Mohammad R. Khadivi for his valuable sug-

gestions to improve this work.

References

[1] Barnsley, M., Fractals Everywhere (Academic Press, San Diego, 1988).
[2] Crownover, C., An Introduction to Fractals and Chaos (Jones and Bartlett, Boston,

1995).
[3] Hardy, G. and Wright, E., Introduction to the Theory of Numbers, 5th edn. (Oxford

University Press, 1983).
[4] Lauwerier, H., Fractals (Princeton University Press, 1987).
[5] Sevcik, C., “A procedure to estimate the fractal dimension of waveforms,” appeared

in Complexity International, Vol. 5 (1998). The article is also available at the URL:
http://www.csu.edu.au/ci/vol05/sevcik/sevcik.html

[6] Schroeder, M., Number Theory in Science and Communication, 3rd edn. (Springer-
Verlag, 1997).

[7] Sloane, N., “The online encyclopedia of integer sequences,” at the URL:
http://www.research.att.com/∼njas/sequences/Seis.html

[8] Sloane, N., The persistence of a number, J. Recreational Math. 6(2), 97–98 (1973).


